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Abstract. Effective scheduling in Heterogeneous Networks is key to
realising the benefits from enhanced Inter-Cell Interference Coordina-
tion. In this paper we address the problem using Grammar-based Genetic
Programming. Our solution executes on a millisecond timescale so it
can track with changing network conditions. Furthermore, the system
is trained using only those measurement statistics that are attainable
in real networks. Finally, the solution generalises well with respect to
dynamic traffic and variable cell placement. Superior results are achieved
relative to a benchmark scheme from the literature, illustrating an oppor-
tunity for the further use of Genetic Programming in software-defined
autonomic wireless communications networks.
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1 Introduction

Traditional cellular infrastructure is under significant strain due to exponentially
increasing demand [8]. The number of mobile-connected devices is now greater
than the world’s population and network traffic will grow tenfold by 2019 [3].
Low-powered antennas called Small Cells (SCs) have been proposed as a means
of scaling existing deployments to meet these trends [4].

In traditional networks, high-powered Macro Cells (MCs) are distributed on
hexagonal grids to provide blanket coverage to User Equipments (UEs). A UE
could be a smartphone, tablet or laptop etc. Heterogeneous Networks (HetNets)
are comprised of both SCs and MCs. By offloading UEs in traffic hotspots, SCs
alleviate strain on the macro tier. Note that hotspots are regions containing a
concentration of UEs. Multi-tiered networks exhibit several desirable properties.
Firstly, SCs support ad-hoc deployment by operators. Secondly, they are a cost
effective means of densifying networks. Finally, HetNets are spectrally efficient as
both tiers share the same channel under the current 3rd Generation Partnership
Project–Long Term Evolution (3GPP–LTE) framework [1].

Network operators must offer better quality of service than their competitors
to attract and retain customers. In particular, they must maximise the data rates
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delivered by their networks. The metric that most strongly correlates with user
experience is the downlink rate which quantifies the amount of data that can
be transferred per unit time. Operators must maximise downlink rates for the
least advantaged customers (due to location say), sometimes at the expense of
the more privileged. Fairness is vital because dropped calls or slow data speeds
are unacceptable from a customer satisfaction standpoint.

HetNets present unique challenges vis-à-vis optimisation because they are
highly dynamic. In this paper, we employ a grammar-based form of Genetic
Programming (GP) to evolve a HetNet scheduling heuristic. This is a difficult real
world problem which to date has not been tackled with GP. Operators currently
implement highly suboptimal greedy proportionally fair scheduling. Tailoring
such methods to corner cases requires much human effort. These inefficiencies
can be alleviated by evolving better software at a cost that is negligible compared
to cell densification–deploying a single SC can cost several thousand euros.

The paper is organised as follows. Section 2 describes the problem in detail.
Previous work is surveyed in Sect. 3. Our simulation environment is described in
Sect. 4. Experiments, results and discussion follow in Sects. 5 and 6. Finally, the
paper closes with future directions and conclusions in Sect. 7.

2 Problem Definition

The 3GPP–LTE framework outlines a number of high level protocols for making
HetNets viable [1]. SCs are typically underutilised because UEs preferentially
attach to stronger MCs. The Cell Range Expansion mechanism is proposed to
encourage more efficient offloading from MCs. To achieve this, SCs broadcast a
Cell Selection Bias (βi) such that βi ≥ 0, ∀i ∈ S, the set of all SCs. There is no
need for MCs to implement bias so βi = 0, ∀i ∈ M, the set of all MCs. A UE
(u) attaches to and hence receives data from cell k, where,

k = arg max
i

(Signalu,i + βi), ∀i ∈ M ∪ S. (1)

If a UE attaches to cell k ∈ S but would otherwise attach to a MC m ∈ M,
then we say that the UE resides in the expanded region of k. Since the signal
from m in the expanded region is by definition larger than that from k, it follows
that interference is significant therein. Edge interference is exacerbated in LTE
HetNets because MCs broadcast on the same channel as SCs.

Interference mitigation in the time domain is a defining feature of the 3GPP
framework. UEs can receive data in 1ms intervals referred to as subframes (SFs).
A contiguous block of 40 SFs defines a ‘frame’. Frames constitute a conve-
nient timespan over which network performance can be analysed. The enhanced
Inter-Cell Interference Coordination (eICIC) paradigm introduced the notion
of Almost Blank Subframes (ABSs) to mitigate cell-edge interference [11]. MCs
mute their data transmissions during an ABS so that only minimal control signals
are broadcast, allowing neighbouring SCs to transmit with minimal interference.
We refer to the sequence of active and muted SFs at MCs as an ‘ABS pattern’.
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Clearly, UEs at SC edges experience greatly reduced interference when nearby
MCs undergo an ABS. However, UEs that are attached to the muting MC can-
not receive any data during an ABS. Intelligent resource interleaving strategies
are thus required to realise the benefits from eICIC. A key task in this regard is
allocating SFs to SC attached UEs–hence, the scheduling problem.

Scheduling is trivial for UEs served by MCs because they enjoy high signal
to interference and noise ratios (SINRs) and therefore can be allocated to every
non-ABS SF. However, SC attached UEs are subjected to high MC interference.
Shannon’s formula [27] describes how downlink rates (R) depend on bandwidth
and SINR:

Ru,f =
B

Nf
× log2(1 + SINRu,f ), (2)

where, B is the available bandwidth, Nf is the number of UEs scheduled in SF
f and u denotes a UE. From Eq. 2, observe that Ru,f is inversely proportional
to Nf , where the downlink rate quantifies how much data can be transferred
in a unit of time. Each UE will experience reduced rates in any given SF as
it becomes more congested. Consequently, scheduling is a non-trivial problem
because we would like to schedule each UE for as many SFs as possible but yet
minimise per SF congestion.

Fig. 1. Depiction of a SC schedule where rows represent SFs and columns store sched-
ules. UE u receives data in all SFs indexed by ‘T’ in their schedule.

The non-trivial nature of the problem can be appreciated by visualising
schedules in the form of a boolean matrix. Figure 1 describes a feasible set of
schedules for a SC with six attached UEs (only 8 out of 40 SFs are displayed for
concision). Here ‘T’ indicates that a UE will receive data in the corresponding
SF, and ‘F’ implies the converse. For instance, UE 9 is scheduled in the first
3 SFs. By construction the illustrative schedules in Fig. 1 exhibit sub-optimal
properties. SFs 1–3 are fully congested so the bandwidth is divided six-fold. SFs
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4–8 are less congested and so UEs 6, 4 and 7 profit from the liberated band-
width. However, the reduced congestion is at the expense of UEs 2, 8 and 9
because they receive less airtime. Clearly, this SC could employ a vast number
of alternative strategies to allocate SFs, despite the fact that it only serves six
UEs. We ask if GP can derive a heuristic to compose synergistic schedules on
the fly. Our task is to populate a scheduling matrix like Fig. 1 for all SCs in the
network.

HetNet control algorithms are typically evaluated using a proportional fair
utility of user experience. The sum log of downlink rates, see for example [12,
22,26,29], is given by:

PF Utility =
∑

u∈M∪S
log Ru, (3)

where,

Ru =
1

|F|
|F|∑

f=1

Ru,f ,

is the average downlink rate for UE u over |F| = 40 SFs. Equation 3 rewards
individuals that fairly allocate resources. Lifting the downlink rates for poorly
performing UEs is heavily rewarded by the logarithm. Conversely, losses for the
best performing UEs are not penalised severely. Therefore, the fitness function
rewards solutions that ‘rob from the rich and give to the poor’.

3 Previous Work

An extensive literature exists on scheduling. Such problems arise in domains of
operations research ranging from rostering [14] and job shop scheduling [23] to
air traffic control [16]. In general, the feasible solution space is explored directly
via search-based techniques. However, heuristic rules that can compute solutions
on the fly are often motivated by practical constraints.

Bader-El-Den and Fatima (2010) employed an auction inspired scheme for
the exam time-tabling problem [6]. They evolved a ‘bidding function’ that exams
use to bid for time-windows. Auctions are held for each available window until
all exams have been allocated. We note that the evolved solution operates within
the context of a meta-algorithm, in this case inspired by an auction.

Jakovocić and Marasović (2012) identified the limitations of enumerative and
search-based techniques [21]. The combinatorial nature of scheduling problems
renders a direct search of the solution space impractical when runtime must be
minimised. Following the authors in [6], they manually designed meta-algorithms
tailored to specific job-shop scheduling environments. Evolved priority functions
operate within these meta-algorithms. Thus, domain knowledge informed the
solution structure, lending GP a foothold to search for functional forms.

Sun et al. (2006) instrumented a game theoretic approach to allocate channel
resources in a wireless network [28] but our literature review has uncovered no
previous work addressing scheduling in HetNets using GP. This paper attempts
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to fill the gap. Evolutionary methods are indicated in this domain because they
are known to yield good solutions in dynamic environments [13,31]. Ho and
Claussen (2009) used GP to optimise the coverage of femtocell deployments in
enterprise environments [20]. Femtocells are SCs with a range of several meters.
Their study represented a proof of concept that it is possible to automatically
evolve controllers for wireless networks. Hemberg et al. (2011-13) used Gram-
matical Evolution to evolve symbolic expressions for setting femtocell powers
to optimise coverage [17–19]. The best solutions outperformed human designed
heuristics on two of the three objectives.

A number of papers are relevant to our work in the space of eICIC optimi-
sation. Weber and Stanze (2012) compared the performance of two scheduling
strategies: strict and dynamic [30]. The former schedules centre UEs in non-
ABSs so that ABSs are reserved for expanded region UEs. The latter allows
edge UEs to receive both ABS and non-ABS airtime. Experiments showed that
the dynamic scheduler achieves a better tradeoff between cell border rates and
spectral efficiency.

Pang et al. (2012) proposed a scheduling method based on dynamic program-
ming [26]. Synchronous patterns were assumed so that MCs mute in unison.
Exactly two SCs were simulated per MC sector, with UEs uniformly distributed
on the map. It is unclear whether their algorithm would perform well under
more general conditions. Jiang and Lei (2012) modelled the scheduling prob-
lem as a two player Nash bargaining game where protected (ABSs) and normal
(non-ABSs) resources at SCs compete for UEs [22]. Each ‘player’ strives to max-
imise the total data that it transmits. Performance was improved under the
proposed algorithm relative to standard baselines. Edge UEs experienced com-
parable rates in the proposed and baseline cases. We will demonstrate that a
GP evolved heuristic can give considerable gains for edge UEs.

Deb et al. (2014) formulated eICIC optimisation as a non-linear programming
instance [12]. Their algorithm computes the airtime UEs should receive from
their serving MC and SC during ABS and non-ABS periods. Simulation revealed
that cell edge UEs gain the most under eICIC. The authors showed that their
algorithm is within 90 % of the optimal but it requires measurement reports
from each UE’s best SC and MC. In practice UEs only communicate with their
serving cell [24].

López-Peréz and Claussen (2013) proposed a heuristic to balance load (num-
ber of UEs) between ABSs and non-ABSs at SCs [24]. Load balancing improved
the 5th percentile of SC attached UE rates by 55 %, in a scenario with fixed
MC ratios and with non-zero biases on SCs. Reduced mean MC throughput
under the proposed scheme, relative to the benchmark, was compensated by
increased mean SC throughput. In sum, this paper demonstrated the consid-
erable gains achievable with intelligent scheduling. We adopt López-Peréz and
Claussen (2013) as a benchmark.
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4 Simulation Environment

In order to rapidly evaluate solutions we simulated a HetNet serving 3.61 km2

of Dublin City Centre. SCs are typically deployed in an ad-hoc fashion because
they serve hotspots, whereas MCs are placed on a grid by network operators. As
such, we scattered SCs randomly on the map and arrange MCs in a hexagonal
pattern. Figure 3 displays a snapshot of the network used for fitness evaluations.
A HetNet with 21 MCs, 50 SCs and 1250 UEs was simulated for training.

Fig. 2. Environmental encoding. Fig. 3. SCs are shaded blue, MCs
white and UEs are indicated by black
dots (Color figure online).

4.1 Generating Inputs

The simulation proceeds sequentially. Firstly, an environmental encoding is gen-
erated from a Google Maps [2] image of the serviced region (Fig. 2). This encod-
ing captures the distribution of buildings, bodies of water, open spaces and roads.
A signal gain path loss matrix G is then computed for all cells. G models the cell
gains, shadow fading and environmental obstacles, so that G[i, x, y] represents
the path loss from cell i to location [x, y].

Next, UEs are distributed onto the map. Hotspots, 30 in total, are generated
containing between 5 and 25 UEs. With probability 0.1 a hotspot will materialise
outside of a SC but mostly they appear within SCs. If a UE is not assigned to
a hotspot then it is placed at a random point on the map. A total of 1250 UEs
are simulated or about 60 per MC sector.

The signal received by UE u from cell i depends on path loss such that:

Signalu,i = PTX
i + G[i, x, y], (4)

where, PTX
i is the transmitting power of i in decibel milliwatts (dBm). SC trans-

mit powers and Cell Selection Biases (βi) are set by an evolved heuristic devised
by the authors [15]. MC powers and biases are constant at PTX

i = 37[dBm] and
βi = 0[dBm],∀i ∈ M. Hence, u can identify its serving cell using Eq. 1.
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MC ABS ratios are set using the simple heuristic from [29]. The ratio of
ABSs to non-ABSs for MC m ∈ M is established by:

ABS r =
|SCexpanded |

|SCexpanded | + |Am| , (5)

where, |Am| is the number of UEs served by m and SCexpanded is the set of
UEs that would attach to m but instead reside in the expanded regions of SCs
within m’s coverage area. Recall from Sect. 2 that the ‘expanded region’ contains
those UEs that attach to SC i instead of m because βi is non-zero. Equation 5 is
sensible because if the number of expanded region UEs is large relative to |Am|,
then m should surrender more SFs, thus mitigating cell-edge interference.

Each MC constructs a feasible muting pattern from the ABS ratio (Eq. 5) by
combining eight base patterns from the standard [1]. Since five SFs are muted
in each of the eight base patterns it follows that the ABS r must be rounded to
an element in the set {5/40, ..., 35/40}. Intra-frame SINR variance is reduced
by ‘front-loading’ muted SFs so that if ABS r = 10/40 for m ∈ M, then m will
mute in the first two SFs for every block of eight, e.g. in SFs (1, 2, 9, 10, 17, 18,
25, 26, 33, 34). A MC cannot entirely mute or transmit ∀f ∈ F .

The most important statistic from a scheduling standpoint is the SINR that
UEs experience in each SF. SINRu,f is computed by dividing Signalu,serving

(the signal in Watts from u’s serving cell) in SF f by, the sum of all interfering
signals (from all other cells) plus noise. Note that SINRu,f depends on which
MCs are muting or transmitting in SF f . The denominator will be reduced
during protected SFs because Signalu,m = 0 from MC m if it is undergoing an
ABS. Therefore, SINRu,f varies over a frame due to the variable number of MCs
that mute in different SFs. Our goal is evolve an expression that maps SINR
related statistics and attachment information to a binary decision for each UE
per SF: schedule or don’t schedule. The terminal set for GP is derived from the
cell attachment information and SINRs as annotated in Table 1.

4.2 Calculating Fitness

Algorithm 1 delineates the meta-algorithm (in the sense of [6,11]) used to yield
schedules from an individual. The GP tree executes independently on each SC
as follows. We loop over SFs and UEs, evaluating the tree at each (u, f) tuple. If
the tree outputs a positive value then u will receive transmissions in SF f , else
u is not scheduled in f . In this sense the tree performs a binary classification
task on every execution.

The schedules are implemented in simulation and summary statistics on the
realised downlink rates (accounting for congestion) are computed. Performance
is expressed as the improvement in sum log downlink rates relative to a baseline
strategy whereby u receives data in every SF f if SINRu,f ≥ 1. This baseline
is naive because whilst airtime is maximised for each UE, so too is congestion.
Recalling Eq. 3, the fitness function is expressed thusly:
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Algorithm 1. Schedule UEs
function getStatistics(u, f)

return Column 2 of Table 1 for UE u in SF f

procedure doScheduling(S, Tree)
for SC ∈ S do � Process each SC independently

congestionf ← 0 � Track congestion in SF f
airtimeu ← 0 � Track number of SFs received by u
S ← 0(|F|×|A|) � Stores SC schedule, see Fig. 1
for f ∈ F do � F = {1, ..., 40} is the set of SFs

for u ∈ A do � A stores the attached UEs
inputs ← getStatistics(f, u)
Output = evaluate(Tree(inputs)) � Inputs are listed in Table 1
if Output > 0 and SINRu,f ≥ 1 then

Su,f ← True � u will receive data in f
congestionf += 1
airtimeu += 1

else
Su,f ← False � For the greater good sacrifice u

return S

Fitness =
1
10

10∑

s=1

(
PF Utilitytree

s − PF Utilitybaseline
s

)
. (6)

Equation 6 expresses overall fitness as the average performance over ten UE
distributions, hereafter scenarios (s). Thus, we provision against overfitting on
a single set of UE locations.

5 Experiments

We instrumented a grammar-based form of GP [9,25]. Grammars allow us to
incorporate domain knowledge and guarantees that syntactically correct struc-
tures are generated. Figure 4 displays the function approximation type grammar
used in Backus-Naur Form (BNF). Four non-linear transforms were admitted
including ‘step’ which output -1 if its argument is less than 0, else +1. The
logarithm and square root functions were protected via log(1 + |x|) and

√|x|
respectively. Random floats in the set {−1.0,−0.9, ..., 1.0}, statistics on instanta-
neous rates and memory nodes (airtime and congestion) composed the terminal
set. The SINR statistics were mapped to instantaneous downlink rates (assum-
ing no bandwidth splitting) as illustrated in Table 1. Note that num viable is
the number of SFs in which a UE can receive data without packet loss (i.e. when
SINR ≥ 1). By contextualising u relative to all attached UEs, we anticipated
that GP would uncover cooperation strategies, whereby u sometimes sacrifices
a particular SF f for the global objective.

Thirty independent runs were performed for 75 generations. The Ramped
Half-and-Half method was used to initialise the population (pop size = 1000)
with an initial max depth of 6. We used fair tournament selection (tournament
size was 1 % of pop size) so that all individuals had a chance of getting selected.
Subtree Crossover, Subtree Mutation and Point Mutation were used to search the
space of derivation trees. Subtree crossover was applied with a probability of 0.5
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Table 1. GP Terminal Set

Raw Input Statistic Terminal Name

SC attached UEs |A| num att

SINRu,f log2(1 + SINRu,f ) downlink

SINRu,f ,∀f ∈ F 1
|F|

∑

f∈F
log2(1 + SINRu,f ) avg downlink frame

" max
f

{
log2(1 + SINRu,f )

}
max downlink frame

" min
f

{
log2(1 + SINRu,f )

}
min downlink frame

" |{SINRu,f ≥ 1
} |f num viable

SINRu,f ,∀u ∈ A 1
|A|

∑

u∈A
log2(1 + SINRu,f ) avg downlink SF

" max
u

{
log2(1 + SINRu,f )

}
max downlink SF

" min
u

{
log2(1 + SINRu,f )

}
min downlink SF

SINRu,f ,∀f ∈ F ,∀u ∈ A 1
|A|

∑

u∈A

(

1
|F|

∑

f∈F
log2(1 + SINRu,f )

)

avg downlink cell

" max
u

{

max
f

{
log2(1 + SINRu,f )

}
}

max downlink cell

" min
u

{

min
f

{
log2(1 + SINRu,f )

}
}

min downlink cell

Previous outputs of tree #SFs received by current UE airtime

Previous outputs of tree # other UEs sharing SF congestion

to each pair of selected parents. Sixty percent of the population was subjected to
Subtree Mutation. The remaining forty percent underwent point mutation with
probability of 0.05, 0.1, 0.2 or 0.3 per node. We used generational replacement
and elitism with elite size equal to 1 % of pop size. A run took ten hours on a
twelve core hyperthreaded machine operating at 2.66GHz.

The search space for this problem admitted many local optima. Trees that
output exclusively positive or negative values yielded trivial schedules whereby
all UEs were always or never scheduled. To avoid local optimum we assigned

Fig. 4. BNF Grammar Definition.
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zero fitness to such trees. Runtime was reduced substantially, without degrading
solution quality, by terminating the simulation early for trivial trees.

6 Results and Discussion

Figure 5 displays the mean best fitness, with a 95 % confidence interval about the
mean (grey shading), across 30 runs for 75 generations. Note we are maximising
the improvement in sum log rates–Eq. 6. Clearly, the evolved population has a
significantly higher mean fitness than the initial random population. Evidently
convergence is not achieved in only 75 generations, so better solutions are likely
to emerge from longer runs. Figure 5 suggests that the GP system is stable
because the variance about mean best fitness is low across many independent
runs.

Fig. 5. Mean best fitness on training data including a 95 % confidence interval (Color
figure online).

The best overall solution (see Fig. 61) was identified by exposing all 30 best-
of-run individuals to unseen test networks. The test fitness of each individual
was computed as the average performance across 100 scenarios, in networks with
20, 60 and 100 SCs (each serving 1250 UEs). Most individuals performed well
in one or two of the three test networks. A few performed very well across all
three topologies. The best individual achieved a fitness of 55.5, 60.4 and 25.8
on the networks containing 20, 60 and 100 SCs respectively. These observations
underscore the need for multiple runs despite the fact that we seek only one
good solution. That some individuals struggle on one or two of the test networks
but perform well on the other(s) may be indicative of overfitting. In future work
the use of a validation network will enable intelligent termination if overfitting
ensues.
1 Note that the constants have been obfuscated to protect intellectual property.
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Fig. 6. Best Evolved Scheduler. Terminals are distinguished by blue text.

The percentage lift in sum log rates in the test network containing 100 SCs
was lower relative to that in the less densified networks. One might expect that
a larger number of SCs should afford the scheduler greater scope to improve
fairness. However on inspection we found that the proportion of UEs in SC
expanded regions decreased with increasing SC density. With 20 SCs on the map
about 14 % of the SC attached UEs resided in an expanded region compared to
just 7 % with 100 SCs. In addition, the average number of UEs per SC decreased
as more SCs were added. In combination these factors diminished the marginal
impact of scheduling. As expected, the overall network utility was boosted by
SC densification. The sum log downlink rates trended 17912→ 18621→18933
as the number of SCs increased 20→60→100. Densification and scheduling are
recognised as key requisites for 5G [7].

6.1 Terminal Utilisation

Figure 7 displays each terminal’s count in the fittest 150 individuals at each gen-
eration. The instantaneous downlink rate (downlink) occurs most frequently.
Heavy utilisation of this terminal is unsurprising because it most faithfully pre-
dicts realised downlink rates. Antithetically, num att appears least frequently.
This too is unsurprising as the number of attached UEs is a constant statistic and
hence it bears no differentiating power. Therefore, num att represents a base-
line with respect to which the importance of other terminals can be inferred.
The terminals describing u’s performance across all 40 SFs appear more fre-
quently than the other contextual statistics. This may suggest that although
u’s context within a SF relative to other UEs is important (* downlink SF,
* downlink cell), more relevant for u are the attributes of a SF f relative to
other SFs (* downlink frame). Of particular interest is the standing of our mem-



94 D. Lynch et al.

Fig. 7. Count of each terminal in the best 150 individuals over 75 generations.

ory nodes, airtime and congestion. Their importance is commensurate with
that of most SF and cell-wide context nodes. In any case it is clear that they
are selected for in the evolving populations. Given the ostensible importance
of memory in HetNet scheduling, we are motivated in future work to explicitly
factor prior decisions into the current tree output, see Sect. 7.

6.2 Subframe Utilisation

This subsection examines how the scheduler displayed in Fig. 6 behaves seman-
tically. To appreciate how MC muting modulates interference at SCs, consider a
toy network with three MCs running ABS ratios of 5/40, 10/40 and 15/40. Since
ABSs are front-loaded as described in Subsect. 4.1, it follows that all three MCs
will mute in SFs 1, 9, 17, 25 and 33. Two of the three MCs will mute in SFs 2,
10, 18, 26, 34, and only one MC will mute in SFs 3, 11, 19, 27, 35. All three will
transmit in the remaining SFs. Thus, SFs 1, 9, 17, 25 and 33 are protected from
high MC interference. Perhaps GP would learn to award protected SFs to UEs
at the SC cell-edge whilst de-allocating those more advantaged cell-centre UEs
(in order to relieve congestion). Indeed, simulation of a network with 60 SCs and
21 MCs revealed stark differences in how edge and centre UEs are scheduled.
For both groups, we counted the cumulative number of UEs scheduled per SF,
for all SCs over ten scenarios.

Columns 2 and 3 of Table 2 display the proportion of expanded region and
centre UEs that are scheduled in each SF. For example, column 2 states that
on aggregate 85 % of the expanded region UEs are scheduled in the best SFs
(1, 9, 17, 25, 33), 58 % in the second best SFs, etc. Column 3 indicates that
the scheduler sacrifices centre UEs by denying them the most protected SFs.
Consequently, congestion is dramatically reduced for expanded region UEs where
their SINR will be greatest. Column 1 confirms that expanded region UEs are
awarded more airtime in the better SFs. They can thus leverage both high SINR’s
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and the liberated bandwidth to maximise their achieved downlink rates. Centre
UEs make up for the lost premium airtime by dominating less protected SFs
where few or no expanded region UEs receive data.

Column 3 shows the cell-wide proportion of UEs scheduled per SF. Clearly,
congestion management is of prime importance in SFs 1, 9, 17, 25 and 33 as less
that 25 % receive data. In fact quite a few UEs are denied in every SF. The pro-
portion jumps to 91 % in SFs 2, 10, 18, 26 and 34 then decreases monotonically
reflecting how the scheduler negotiates trade-offs between airtime and conges-
tion. In sum, non-trivial yet intuitive behaviour is realised by the expression in
Fig. 6.

Table 2. Proportion scheduled per SF in various SC regions.

SF Expanded region UEs Cell-centre UEs All attached

1, 9, 17, 25, 33 0.85 0.14 0.23

2, 10, 18, 26, 34 0.58 0.96 0.91

3, 11, 19, 27, 35 0.28 0.94 0.86

4, 12, 20, 28, 36 0.10 0.93 0.82

5, 13, 21, 29, 37 0.02 0.92 0.81

6, 14, 22, 30, 38 0.0 0.92 0.80

7, 15, 23, 31, 39 0.0 0.92 0.80

8, 16, 24, 32, 40 0.0 0.92 0.80

6.3 Benchmarking

The benchmark scheme was proposed by López-Peréz and Claussen (2013) [24].
Based on SINR, UEs are split into queues ‘overlapping’ with host MC ABSs or
‘non-overlapping’. The worst UE in both queues is identified. Achievable down-
link rates are computed for both worst UEs for both queue types. Next the
SC computes target queue lengths based on the expected rates. UEs are trans-
ferred iteratively from one queue to the other until convergence. They are then
scheduled according to their queue type, i.e. during ABS or non-ABS SFs.

Table 3 compares the evolved GP solution with the benchmark scheme, a
Genetic Algorithm (GA) and a Hill Climbing heuristic. The improvements in the
5th and 50th percentile downlink rates and the lifts in sum log rates (Eq. 6) over
baseline scheduling are reported. Statistics are generated across 100 scenarios in
unseen test networks containing 20, 60 and 100 SCs. The GA was instrumented
using a population size of 750 and run for 50 generations for each SC in the
test set. The solution space was explored using two-point crossover (probability
1.0) and bit flip mutation on 20 % of the population (probability 0.2 per codon).
Similarly, the Hill Climber mutated a randomly generated schedule (bit flip
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Table 3. Comparison of Methods

with probability 0.025 per codon) for 20,000 iterations and greedily accepted
improvements to the current best.

The first panel shows that our evolved solution outperforms the benchmark
on all metrics. Two sample t-tests confirm that the differences are significant at
a confidence level of 0.99. Of particular interest is row 2 of the first panel which
compares the benchmark and evolved heuristics with respect to the 5th percentile
of downlink rates. Our fitness function does not incorporate this metric explicitly.
We simply maximise sum log rates. Therefore, the improved performance of the
worst UEs versus the baseline and benchmark schemes emerges naturally as a
by-product of the optimisation.

The second panel shows that there is scope to build on this pilot study.
Both the GA and Hill Climbing heuristics significantly outperform the evolved
solution and benchmark. Note that these direct search methods are orders of
magnitude too slow for online operation.

7 Future Work and Conclusions

We implemented a reinforcement learning approach in this work but some pilot
experiments suggest that supervised training will yield far better schedulers.
In a follow-up study we will compute near optimal schedules offline using a
genetic algorithm. Hence, a more informative fitness function can be devised
which respects the distance (e.g. Hamming) to the target semantics. Table 3
reveals that significant gains are achievable.

We observed in Sect. 6 that it is expedient to track intermediate scheduling
decisions using counters. Conrads et al. (1998) considered a time series problem
where previous tree outputs acted as terminals for the current evaluation [10].
Alfaro et al. showed their recurrent system achieves comparable performance
with state of the art methods on real world problems [5]. We propose that a
recurrent system like [5,10] will yield better results on the present problem.

Genetic Programming lends itself well to the task of evolving schedulers for
HetNets implementing eICIC. Indeed, the framework proposed in this paper
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outperforms a state of the art human engineered approach. Future work will
build on this pilot study to close the optimality gap.
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